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ABSTRACT 

Near-nadir observations of the Libya 4 site from the S-NPP VIIRS Day-Night Band (DNB) and Moderate resolution 

Bands (M bands) are used to assess the detector calibration stability and half-angle mirror (HAM) side differences. 

Almost seven years of Sensor Data Records products are extracted from the Libya 4 site center over an area of 32×32 

pixels. The mean values of the radiance from individual detectors per HAM side are computed separately. The 

comparison of the normalized radiance between detectors indicates that the detector calibration differences are 

wavelength dependent and the differences have been slowly increasing with time for short wavelength bands, especially 

for M1-M4. The maximum annual average differences between DNB detectors are 0.77% in 2017 at HAM-A. For the M 

bands, the maximum detector differences in 2017 are 1.7% for M1, 1.8% for M2, 1.3% for M3, 1.2% for M4, 0.67% for 

M5, 0.75% for M7, 0.57% for M8, 13% for M9, 0.63% for M10, and 0.66% for M11. The average HAM side A to B 

difference in 2017 are  0.00% for DNB, 0.22% for M1, 0.17% for M2, 0.15% for M3, 0.09% for M4,  -0.07% for M5, 

0.02% for M7, 0.01% for M8, 1.4% for M9, 0.01% for M10,  and 0.03% for M11. Results for M6 are not available due 

to the signal saturation and M9 results are not accurate because of the low reflectance from the desert site and the strong 

atmospheric absorption in this channel. The results in this study help scientists better understand each detector’s 

performance and HAM side characteristics. Additionally, they provide evidence and motivation for future VIIRS 

calibration improvements. 
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1.  INTRODUCTION 

1.1 S-NPP VIIRS Sensor Overview 

The Suomi National Polar-orbiting Partnership (S-NPP), launched on October 28, 2011, is one of the modern Earth-

observing weather satellites. It makes a bridge to provide continuity between NASA's Earth Observing System (EOS) 

Satellites and the Joint Polar Satellite System satellites to observe Earth elements, including the land, ocean, and 

atmosphere [1, 2, 3]. The five instruments onboard S-NPP are the Visible Infrared Imaging Radiometer Suite (VIIRS), 

the Cross-Track Infrared Sounder, the Ozone Mapping and Profiler Suite, the Advanced Technology Microwave 

Sounder, and the Cloud and Earth Radiance Energy System. VIIRS data has been used to measure cloud and aerosol 

properties, ocean color, ocean and land surface temperatures, ice movement and temperature, fires, and Earth's albedo.  

VIIRS is designed based on MODIS heritage, and is a wide-swath (3034 km), cross-track scanning radiometer which 

collects data of the Earth’s surface in 22 visible and infrared spectral bands (400-12500 nm). Among the 22 spectral 

bands, there are 15 Reflective Solar Bands (RSB) and 7 Thermal Emissive Bands (TEB). The VIIRS instrument was 

powered on November 08, 2011 and the instrument nadir door was opened on November 21, 2011. Since then the VIIRS 

has been collecting observation data for more than 6 years. 

Among the RSB, the DNB on VIIRS is a visible/near-infrared panchromatic band, which can observe the Earth during 

both daytime and nighttime. The spatial resolution of the DNB is 750m and there are 32 aggregation zones through each 

half of the instrument swath on either side of nadir. In order to provide imagery of clouds and Earth targets from full 

sunlight to quarter moon illumination status, the DNB comprises three gain stages: the low gain stage (LGS), the 
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medium gain stage (MGS), and the high gain stage (HGS). The LGS is used for observing bright Earth scenes at day 

time, the MGS is used for scenes near the terminator or at twilight, and the HGS is used for night scenes. In this study 

the data that we used focus on the DNB LGS. 

The VIIRS M1-M7 bands are used primarily for ocean color and aerosol applications; the M8, M9, M11, M14, I4, and I5 

bands are used for clouds; M12, M13, M15 and M16 are primarily used for sea surface temperature; I3 and M10 are used 

for snow; and I2 and I1 are used for Normalized Difference Vegetation Index (NDVI) and imagery. The following table 1 

has listed the VIIRS sensor spectral bands characteristics.  

Table 1. List of characteristics of VIIRS Sensor DNB, I bands, and M bands. 

VIIRS 

Band 

Wavelength 

Range (nm) 
Primary Earth Data Records Gain Stages 

Band 

Explanation 

Spatial 

Resolution 

at Nadir (m) 

M1 402-422 Ocean Color Aerosols Low, High 

Visible/Reflective 

750 m 

M2 436-454 Ocean Color Aerosols Low, High 

M3 478-488 Ocean Color Aerosols Low, High 

M4  545-565 Ocean Color Aerosols Low, High 

M5  662-682 Ocean Color Aerosols Low, High 

M6  739-754 Atmospheric Correction Single 
Near IR 

M7  846-885 Ocean Color Aerosols Low, High 

M8 1230-1250 Cloud Particle Size Single 

Shortwave IR 
M9 1371-1386 Cirrus Cloud Cover Single 

M10 1580-1640 Snow Fraction Single 

M11 2230-2280 Clouds Single 

M12 3610-3790 Sea Surface Temperature Single 

Medium-wave IR 
M13 3970-4130 

Sea Surface 

Temperature/Fires 
Low, High 

M14 8400-8700 Cloud Top Properties Single 

Longwave IR M15 10260-11260 Sea Surface Temperature Single 

M16 11540-12490 Sea Surface Temperature Single 

DNB  500-900 Day/Night Band 
Low, Middle, 

High 
Visible/Reflective 

750 m 

across full scan  

I1 600-680 Imagery Band Single Visible/Reflective 

375 m 

I2 850-880 NDVI Single Near IR 

I3 1580-1640 Binary Snow Map Single Shortwave IR 

I4 3550-3930 Imagery Band Clouds Single Medium-wave IR 

I5 10500-12400 Imagery Band Clouds Single Longwave IR 

 

VIIRS DNB and each M band have 16 detectors; and each I band has 32 detectors in the along-track direction. VIIRS M 

bands and I bands detectors are distributed on three Focal Plane Assemblies (FPAs) [4]. These M bands and I bands 

detectors are rectangular in shape with the smaller dimension in the along scan direction with considerations made for 

the different pixel growth rates in both scan and track directions. The VIIRS sensor observation altitude is 828 km. The 

Rotating Telescope Assembly (RTA) scans the Earth between scan angles ±56.28° off nadir. At scan angles greater than 

approximately 19°, the bow-tie effect leads to scan-to-scan overlap [5]. These overlap pixels are assigned fill values and 

their radiometric readings are not transmitted to the ground. These data gaps showed in raw data will not display when 

the data is projected or gridded based on the Earth’s surface. The DNB detectors design are more complicated than the M 

bands and I bands detectors. DNB detectors are a backside-illuminated Charge-Coupled Device (CCD) detector chip 



 

 

 

which has three different gains through four separated stages relative to different light-sensitiveness [4]. DNB sub-pixel 

aggregation is performed in both the scan and track direction, thus the DNB has 750 m resolution across full scan. For all 

VIIRS spectral bands, the best signal to noise ratios are in the nadir view of the scan.  

1.2 S-NPP VIIRS RSR 

The Relative Spectral Responses (RSR) of all VIIRS bands were well measured and provided by the government team in 

the pre-launch test programs [6, 7]. Figure 1 indicates pre-launch RSR of all VIIRS RSB bands and their comparison 

with normalized solar power. Shortly after S-NPP launch, several VIIRS reflective solar bands had decreased optical 

throughput due to the mirror coating contamination of the RTA [1, 8], which also caused RSRs to change over time. 

Modulated band averaged RSRs are generated at different times during SNPP mission, and are used to update post-

launch SDRs Look-Up-Table (LUT) to correct the RTA mirror contamination effect [9, 10]. 

 

 

Figure 1. DNB and M bands pre-launch RSRs, and normalized solar power. 

1.3 Previous Study on Detector Difference 

The simplest imaging sensor only carried a single detector. It only scanned a series of lines or narrow strips across the 

targets [11]. In contrast to this type of conventional imaging radiometer, most current imaging sensors, such as MODIS 

and VIIRS, contain several FPAs with multiple detectors aligned in the along-track direction. A single scan from these 

sensors can collect multiple cross-track strips recorded by aligned detectors, so that an image scene can be finished fast 

and the scan rate is slower than that of a single detector imaging sensor [12]. This slower scan rate design can increase 

the dwell time for each pixel which leads to higher signal-to-noise ratio (SNR). The disadvantage of this multi-detector 

arrangement design is the overlapped pixel toward the swath edges and imagery striping due to detector differences [12].  

Many methodologies have been investigated on studying detector difference of imaging sensors. A ratio approach was 

applied to co-located MODIS and MISR pixels to study Terra collection 5 detector-to-detector difference and mirror side 

difference [13]. The Terra detector-to-detector differences were believed to be caused by systematic calibration bias from 

the use of the solar diffusor (SD). Ground targets, including Dark Oceanic site near Equator Pacific Ocean area and the 

desert site Libya 4 in the Sahara Desert were also used for MODIS collection 6 data detector difference study [14, 15]. 

Recent research in 2016 used the Deep Convective Cloud (DCC) measurements to assess the difference among MODIS 

detectors [16].  The DCC research found that Terra MODIS Collection 6 detector differences were less than 1% for 

bands 1, 3–5, and 18. The differences were up to 2% for bands 6, 19, and 26 and the largest difference was 4% for band 

7. For Aqua bands, most detector differences were less than 0.5% except bands 19 and 26, which were up to 1.5%.  

Scientists have also studied the detector differences and HAM side differences in S-NPP VIIRS products. Stripe noise 

was found in some level 1 data, including the M12, M15 and M16 bands [17, 18]. They believed these striping EV data 

were influenced by the detector RSR difference, the atmospheric influence, digital count restoration (DCR), and detector 



instability [17, 18]. Many correction models were tested to reduce the striping, including a unidirectional quadratic 

variational model [17] and Line-by-Line radiative transfer model [18]. Wang et al. [18] found that the noise along track 

direction was the major reason for the striping observed in VIIRS M15 and M16 imagery. D1 and D2 in M15, and D9 

and D12 in M16 had much higher noise levels than other detectors in the same band. Another DCC research study on S-

NPP VIIRS indicates that most solar reflective bands’ detector differences were less than 1% to the average value, except 

for I3 and M10 bands [19]. The HAM side difference of S-NPP VIIRS was insignificant and stable with time. Recent 

research by Lei et al. 2017 [20] investigated the reflectance of the SD panel changes over time and found that the SD 

bidirectional reflectance distribution function (BRDF) value degraded with time. The degradation factor was both 

incident sunlight and outgoing direction dependent [20]. It was believed that the SD BRDF was one of the sources for 

the detector differences in S-NPP VIIRS.  

1.4 Objective of This Study 

Previous studies on VIIRS ocean color products [21] indicated that the ocean color Environmental Data Record (EDR) 

products are highly sensitive to the Sensor Data Record (SDR) data quality. Improving the calibration F-LUT in the 

VIIRS Raw Data Record (RDR) to SDR data processing can increase accuracy in the EDR products. Approximately 

0.1% accuracy in SDR data is required to derive good quality ocean color EDR products [22]. Thus, it is very important 

to assess and monitor the S-NPP VIIRS products quality. The main objective in this research is using the ground target, 

Libya 4, to monitor the VIIRS DNB and RSB M bands detector-to-detector differences and HAM side differences from 

2012 February to 2018 June. We make efforts to find the possible root causes of striping and the amount of difference 

change with time, and we also compare our results with some previous studies to better understand the performance of 

the VIIRS instrument. 

 

2. STUDY SITE, DATA, AND METHODOLOGY 

2.1 Study Site 

Several Earth surface sites with stable radiometric characteristics are widely used as references to monitor satellite sensor 

long-term stability [14, 15, 23]. Libya 4 is one of the test sites that are endorsed by the Committee on Earth Observation 

Satellites (CEOS) Working Group on Calibration and Validation (WGCV) as being “reference standards” 

(http://calval.cr.usgs.gov/sites_catalog_ceos_sites.php).  

The Libya 4 desert site [Lat. 28.55°, Lon. 23.39°] is close to horizontally uniform and is a relatively homogeneous area 

covered by sands in Africa [24, 25]. The Libya 4 site is often selected as a calibration study site based on its high spatial 

uniformity and temporally invariant surface cover properties for stable reflectance and BRDF [23-26]. This site is 

located in arid regions and thus has a low probability of cloudy weather and precipitation. Also this site contain high 

reflectance in most visible and near infrared bands and it is “bright” on the Earth, thereby it has a high signal-to-noise 

ratio (SNR) in the Earth view observation data. Figure 2 shows Libya 4 site observed from the 2018 Landsat image data. 

The SCIAMACHY spectra of Liby4 site are provided by the European Space Agency. We integrated the spectral 

resolution to better display this site’s reflectance characteristics. Figure 3 indicates that the reflectance of the Libya 4 site 

is high in visible and near infrared and there is some atmospheric influence for wavelengths larger than 1000 nm.   

http://calval.cr.usgs.gov/sites_catalog_ceos_sites.php


 

 

 

 
Figure 2. Google map of Libya 4 site based on 2018 Landsat images. 

 
 

Figure 3. SCIAMACHY spectra of Libya 4. 

 

2.2 Data Selection 

The data products used in this study are the NASA S-NPP VIIRS L1B data at nadir on Libya 4 site which can be 

downloaded from Level 1 and Atmosphere Archive and Distribution System (LAADS) 

(https://ladsweb.modaps.eosdis.nasa.gov/). We used the products made at VIIRS Land SIPS (Science Investigator 

Processing System) 5000-LSIPS C1 Processing. This version of LSIPS data has been reprocessed with improved 

calibration algorithms and LUTs [https://landweb.modaps.eosdis.nasa.gov/NPP_QA/]. Three products were downloaded 

including DNB, M-bands, and On-board Calibrator Intermediate Products (OBC IPs). We selected the data near nadir 

overpass for Libya 4 to cover the period between S-NPP launch and June 2018. In this study, the solar irradiance LUT is 

provided from Aerospace Corporation and the modulated RSR LUTs are provided by the VIIRS Characterization 

Support Team (VCST). Among the data we used, the on orbit screen transmittance functions were generated from yaw 

maneuver data and regular on-orbit data conducted early in the mission and the RSR functions have been updated several 

times and were implemented in data processing [10]. 

Images are examined both by calculating standard deviation values of the Libya 4 site radiance and by visual 

investigation. We exclude the data that show less homogeneity, where the 32x32 pixels derived from DNB coefficient of 

variation (CV) is higher than 0.03 and M bands CV are higher than 0.02, except M9. For M9, we used the 0.2 as CV 

filter since the variation is larger in this band due to the atmospheric influence and low surface reflectance. Thus any 

images with clouds, shadows, or inhomogeneous surface structure over Libya 4 site were excluded for this study. 

http://ladsweb.nascom.nasa.gov/


In addition, the distances from study site center pixel ([Lat. 28.55°, Lon. 23.39°]) to nadir are less than 60 DNB pixels, 

which is within 45 km on ground distance, and the satellite zenith angles are less than 3.5 degrees. The solar zenith angle 

range is from 14 to 55 degrees for Libya 4. We extract 32 by 32 pixels to calculate the DNB and M-bands mean radiance 

per detector per HAM side. The extracted DNB pixels are all within the aggregation zone 1 thus each DNB detector 

signal studied in this paper is integrated from certain subpixel detectors from the CCD detector chip. All observations are 

at daytime thus the DNB data are all observed in low gain stage at the Libya 4 site. At the Libya 4 site, M1 and M2 

bands are in high gain stage; M3 band has both high gain and low gain stage observation due to different seasons; and 

M4, M5, and M7 bands are all in low gain stage. Based on the above requirements, Libya 4 site images are selected from 

16-day repeatable orbits so all data have approximately the same viewing geometry relative to the site.  

2.3 Detector and HAM-side Difference Calculation  

DNB SDRs include calibrated and geolocated radiance data, while the M bands SDRs contain both radiance and 

reflectance data. Lm is provided by the DNB SDRs product directly, which is calibrated considering the response versus 

scan angle (RVS) of the HAM and the SD BRDF degradation using the time dependent modulated RSR [1, 8, 10]. The 

DNB radiance with the Earth-Sun distance and solar zenith angle normalization are calculated for each pixel using the 

following equations (1)-(2). 

     )cos(

* 2



dL
L m

normalized 

                          (1) 

normalizedL
 = Measured solar radiance after Earth-Sun distance and solar zenith angle normalization (W·cm-2·Sr-1) 

mL
 =Measured solar radiance imported from the SDR DNB product (W·cm-2·Sr-1) 

d  =Earth-Sun distance (astronomical units) 

  =Solar zenith angle (degree) 

 

We used OBC IPs data to extract HAM side and detector information for each pixel and do the statistics analysis based 

on the HAM side and detector classification. Then we use equation (2) to calculate the normalized radiance for each 

detector based on the ratio of individual detector value to the mean values of all detectors per HAM side. 

 

𝑅_𝐿𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑_𝐷𝑖_𝐻𝐴𝑀𝑗 =
𝐿𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑_𝐷𝑖_𝐻𝐴𝑀𝑗
1

𝑛
∑𝐿𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑_𝐻𝐴𝑀𝑗

          (2) 

 𝑅_𝐿𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑_𝐷𝑖_𝐻𝐴𝑀𝑗= Normalized ratio of detector i HAM side j radiance.  

𝐿𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑_𝐷𝑖_𝐻𝐴𝑀𝑗= Measured solar radiance of detector i HAM side j after Earth-Sun distance and solar 

zenith angle normalization (equation 1).   

 
1

𝑛
∑𝐿𝑛𝑜𝑟𝑚𝑙𝑖𝑧𝑒𝑑_𝐻𝐴𝑀𝑗=Mean value of 𝐿𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑  for all detectors in HAM j. n is the total number of detectors. 

 

The M bands radiance ( MbandmL _ ) and normalized radiance ( )cos(

* 2

_

_


dL
L

Mbandm

Mbandnormalized 
) data are calculated using the scaled integer 

(SI), scale, and offset values provided by the SDR products following equations (3) - (4).   

offsetscaleSIL Mbandm  *_                     (3) 

)cos(

* 2

_

_


dL
L

Mbandm

Mbandnormalized 

                     (4) 

The calculation of the M-bands normalized ratio for detector i HAM side j radiance is similar to the DNB method in 

equation (2). The HAM side ratio is also calculated based on the radiance ratio of each detector for the two HAM sides 

(equation 5). Later, simple yearly averages of the detector differences and HAM side ratios are calculated for each 

detector to remove the seasonal variation influence.  



 

 

 

𝐻𝐴𝑀_𝑅𝑎𝑡𝑖𝑜𝐷𝑖 =
𝐿𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝐷𝑖_𝐻𝑎𝑚𝐴

𝐿𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝐷𝑖_𝐻𝑎𝑚𝐵

          (5) 

  

 

3. RESULTS 

3.1 Image Striping  
 

For a multi-detector imaging sensor, if the instrument was characterized perfectly and the measurements from each 

detector and each mirror side are accurate after calibration, then there would be no striping in the image product. Striping 

is a consequence of the calibration algorithm, where each detector is calibrated independently but there are differences in 

the radiance measurement from each detector and each mirror side due to the calibration inaccuracy. It is hard to 

characterize the instrument perfectly because of limited time and cost. As a result, striping artifacts are very common in 

image products. In this study, we found that the DNB and M1-M4 bands have some striping artifacts that are visible by 

eye [figure 4]. These striping artifacts could be introduced by several factors such as the two-side scan mirror not being 

characterized perfectly, the detector responses changing with time due to RSR change, or the detectors may be noisy. To 

assess the striping in VIIRS, we have investigated the detector difference and HAM side difference in long term trending. 

The results are presented in sections 3.2 and 3.3. 

 
Figure 4. S-NPP true color image (M5/R, M4/G, M3/B), and zoom in images for DNB and M1-M4 bands on 2018/178. 

All images are radiance products with enhanced effect by a Gaussian stretch in ENVI software. 

 

3.2 Libya 4 Site Radiance Trends for Detector Differences  
 

For the Libya 4 site, the detector radiance has strong seasonal oscillations due to the solar zenith angle and Earth-Sun 

distance changes [figure 5]. The normalization of these two factors has significantly removed the seasonal variation 

[figure 6]. To better understand the difference between detectors, we calculate the ratio of individual detector’s radiance 

to the mean radiance of all detectors per HAM side [figure 7]. After averaging the sampled data for each year, from 2012 

to 2018, the plot [figure 8] indicates detector difference information based on the above statistical method.  



 

Figure 5. Libya 4 site DNB radiance trending for each 

detector at HAM A. 
Figure 6. Libya 4 site DNB solar zenith angle and Earth-Sun distance 

normalized radiance trending at HAM A. 

 

Figure 7. Libya 4 site DNB radiance ratio of individual detector to 

the mean at HAM-A. 

Figure 8. Libya 4 site DNB yearly average radiance ratio of 

individual detector to the mean at HAM-A. 

 

For DNB, there is a general decline in the trending as the detector number increases, which indicates a possible small 

calibration bias [figure 9]. The variations between adjacent detectors are very small, most of them are within 0.2%, so 

the difference between one scan line to the next is small unless that is the edge detectors, D1 and D16. This result 

matches the striping observations in the DNB radiance image in figure 4. The DNB maximum detector difference is 

0.77% in 2017 HAM-A side [figure 9 and table 2]. There is also a general increase in the value of maximum detector 

difference from 2012 to 2017 yearly average data.    

 



 

 

 

 
      

Figure 9. Libya 4 site DNB per full year average radiance ratio of individual detector to the mean at two HAM sites. 

 

Figure 10 shows the RSB M bands detectors differences. These results indicate that the detector difference is dependent 

on the band wavelength. The shorter wavelength bands show larger relative detector differences (M1- M4). This is 

consistent with the wavelength-dependent SD degradation found in S-NPP. There is more degradation in shorter 

wavelength bands than in the longer wavelength bands [20]. There is no available data for M6 due to the signal 

saturation at the Libya 4 site. The M9 reflectance is low and the sensor detected signals become extremely small and the 

results are less stable comparing with other RSB due to its low SNR. In 2017, M1-M4 maximum detector differences are 

higher than 1% [table 2] and there is a general increase of the maximum detector difference in the trending as the time 

increases since launch. The M1-M4 striping can be observed from the images of radiance [figure 4].  For the RSB M 

bands, the maximum detector differences in 2017 are 1.7% for M1, 1.8% for M2, 1.3% for M3, 1.2% for M4, 0.67% for 

M5, 0.75% for M7, 0.57% for M8, 13% for M9, 0.63% for M10, and 0.66% for M11. In addition, we have investigated 

each detector’s radiance standard deviation values, and average them for each year. We do not find any detectors that are 

noisy or have significantly higher standard deviation than other detectors.  

   



  

  

  



 

 

 

 
 

 

Figure 10. Libya 4 M1-M5, M7-M11 yearly average radiance of individual detector to all detectors’ mean at HAM-A. 

     
Table 2. List of maximum detector difference in yearly averaged data. The numbers highlighted in yellow are larger than 0.01.   

 

3.3 S-NPP VIIRS HAM Side Difference  
 

The S-NPP HAM side difference is also evaluated in this study. Figure 11 shows the trending results of DNB mirror side 

radiance ratio. Figure 12 shows the HAM side ratio for all studied M bands. The DNB HAM side difference is small. 

The largest HAM side difference is usually in the edge detectors. It is about 0.35% in D16 in year 2012. For most of the 

year, most detector’s HAM difference is less than 0.2%.  

In 2017, all detectors annual average radiance difference for HAM A to HAM B is: 0.00% for DNB, 0.22% for M1, 

0.17% for M2, 0.15% for M3, 0.09% for M4, -0.07% for M5, 0.02% for M7,  0.01% for M8, 1.4% for M9, 0.01% for 

M10, and 0.03% for M11. The difference is small and stable since 2012. The bands M1-M4 have relatively larger 

difference, comparing with the other M bands. The maximum differences in some detectors are up to 0.4%, and most of 

them are lower than 0.2%. The M1, M2 bands results indicates that their HAM A side radiance is slightly higher than the 

HAM B side radiance by about 0.2% for the average of all detectors. For M5, M7, M8, M10, and M11, their HAM side 

difference is very small and stable over all years. 



The yearly trends indicate that each year the HAM side difference has some variation due to the variation of the data. 

The HAM side difference in 2017 is pretty small comparing with other years. The HAM side difference is stable and not 

getting larger in the past few years thus the HAM side difference in S-NPP VIIRS is negligible. 

 
 

Figure 11. Libya 4 site DNB yearly average HAM side ratio. 

 

 

   

 



 

 

 

 

 
Figure 12. Libya 4 site M bands yearly average HAM side ratio. 



3.4 Comparing Results with Previous Studies 

The Earth view data is more complex than the onboard calibration data because its noise is mixed with diverse signal 

sources. Thus Earth view data is suitable to evaluate the overall calibration accuracy and help to find the error sources. 

The onboard calibration data has no atmospheric influence and is close to spatially uniform, thus it is more suitable to 

analyze the instrument effects, such as the BRDF influence and other instrument system error or noise sources. A study 

by Lei et al. using the onboard calibration SD panel data found that the SD BRDF value degraded non-uniformly with 

time [20]. The research found that differences of up to 3-4% in solar energy exposure over the VISNIR bands’ detector 

SD footprints likely causes spatially non-uniform degradation of the SD. In our study, the M1-M4 maximum detector 

difference changes with time and the percentage of change matches well with the Lei et al. [20] study. We believe this 

non-uniform degradation of the SD leads to an error in the calibration and this is the main cause of the detector 

difference we see in the Earth view RSB data.  

Results from the study on the S-NPP detector Earth view spectral radiance difference from DCC [19] are also compared 

with our results. DCCs are consistent targets which are cold and bright, and are nearly Lambertian at low solar and view 

zenith angles. The DCCs reflectance spectrum observed by the sensor contains minimal amount of water vapor and 

aerosols influence, compared to the observation of ground targets. A DCC study on S-NPP VIIRS SDR from February 

2012 to June 2015 indicated that most solar reflective bands’ detector differences were less than 1% comparing with the 

mean values, except for I3 and M10 bands [19]. The detector differences showed increasing trends for some short-wave 

bands (M1-M5) and the other bands with longer center wavelengths remain stable. The HAM side difference was 

insignificant and stable in DCC observations. Those short-wave bands from M1-M4 also had relatively larger HAM side 

difference. M1 had up to 0.25%±0.04% HAM side difference. In our study, M1 is also the band that has the large 

detector difference as 1.7% and its HAM side difference is 0.22% in 2017.  

The Libya 4 M1 to M11 bands detector differences are very close to the DCC results, except M9 and M10. Scarino et al. 

[28] showed the SCIAMACHY hyperspectral data for Libya 4 site, DCC site, and other Earth view targets. In Libya 4 

desert site, M9 band channel had very low reflectance (~0.05) and also had large influence from atmospheric aerosol 

while M10 had high reflectance (~0.6) and also had some influence from atmosphere [28] [figure 1, 3]. The DCC 

reflectance was high in M9 (~0.6) and low in M10 (~0.2) [28]. Thus the M10 detector difference was smaller in Libya 4 

site (~0.7%) than in the DCC study site (~1.6%) in 2015 data. The difference in M9 and M10 results are due to the 

atmosphere influence and the different characteristics of the two targets. We believe the M9 results is more accurate in 

the DCC study whereas the M10 result is more accurate in our Libya 4 site study due to their high SNR.  

In the VIIRS sensor, the HAM is the only optical component with a varying angle of incidence during the scanning 

hence it is the only optical component which may change the polarization sensitivity during scanning. S-NPP VIIRS 

polarization sensitivity is wavelength dependent and detector dependent [27]. The polarization sensitivity is higher at a 

shorter wavelength and in lower detector index [27], which matches with the observation of the detector differences in 

our Libya 4 study. Currently polarization corrections have not been applied in the S-NPP VIIRS RSB calibration 

algorithm. We believe that the HAM side difference in S-NPP VIIRS is caused by the polarization effects and may also 

be scene dependent.  

 
4. CONCLUSIONS 

 

The Suomi NPP VIIRS has been operating to collect global data for almost seven years now. In this study, we use S-NPP 

VIIRS observed Earth radiance from the Libya 4 site to determine the detector-to-detector differences and HAM side 

differences for the DNB and RSB M bands. The analyses are based on the Libya 4 nadir image radiance data repeated 

every 16 days from February 2012 to June 2018. To reduce the effect of seasonal variation, Earth-Sun distance correction 

and solar zenith angle correction are applied to the radiance data. The ratio of individual detector to all detector mean 

radiance per HAM side are calculated. The yearly averaged detector radiance ratio and HAM side ratio are investigated 

from 2012 to 2017. The 2017 annual data analysis indicates that the maximum detector differences are 0.77% for DNB,  

1.7% for M1, 1.8% for M2, 1.3% for M3, 1.2% for M4, and the M5-M11 are all less than 0.8% except M9. The detectors 

close to the two edges have the largest differences relative to the center detectors.  

The current Earth view data from the Libya 4 site also indicates small mirror side differences in S-NPP VIIRS. It is 

0.22% for M1, 0.17% for M2, 0.15% for M3, and the other RSB bands are less than 0.1% except M6 and M9. It is likely 



 

 

 

due to polarization effects and is scene dependent. In this study, both detector-to-detector differences and HAM side 

differences are found to be wavelength dependent. The larger differences are in the shorter wavelengths. Our study 

results have been compared with some previous research, such as Chang et al. DCC research [19] and Lei et al. S-NPP 

SD BRDF degradation [20]. Due to the low reflectance in M9 at the Libya 4 site, M9 results are not accurate in this 

study while M10 results are more reliable than that in the DCC research. The other bands’ performance is consistent with 

the previous studies.  

Although the SD is expected to accurately characterize detector response in the current onboard calibration algorithm, 

the uncertainties associated with the time-dependent SD degradation, such as solar exposure time, result in inadequacies 

in the estimation of each detector’s gain. This can cause the detector differences and image striping to increase with time. 

We believe that the HAM side difference in our study may be caused by the polarization effects related to the HAM 

characteristics. In the future we will also test more ground sites to see whether these differences are scene dependent.  

The procedure for selecting usable scenes and data processing for the detectors trending is a routine task that is doable 

for other scientists. The long term trending used in this study is helpful for monitoring each detector’s performance and 

the HAM characteristics. Dead detectors or noisy detectors can be identified from these observations if there will be any 

in the future. Our research results can provide assessment for S-NPP VIIRS performance as well as provide motivation 

and direction for future algorithm improvement. Our future work will continue to monitor the monthly change for each 

detector and will also add more ground targets, such as the Dome C and Deep Ocean sites. When the detector differences 

get large enough to trigger a correction in the algorithm, we can also use this study’s method to validate the correction 

results.   
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